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ABSTRACT

An unsupervised point cloud object retrieval and pose estima-
tion method, called PCRP, is proposed in this work. It is assumed
that there exists a gallery point cloud set that contains point cloud
objects with given pose orientation information. PCRP attempts to
register the unknown point cloud object with those in the gallery
set so as to achieve content-based object retrieval and pose estima-
tion jointly, where the point cloud registration task is built upon an
enhanced version of the unsupervised R-PointHop method. Exper-
iments on the ModelNet40 dataset demonstrate the superior perfor-
mance of PCRP in comparison with traditional and learning based
methods.

Index Terms— Unsupervised learning, pose estimation, object
retrieval, successive subspace learning.

1. INTRODUCTION

Content-based point cloud object retrieval and category-level point
cloud object pose estimation are two important tasks of point cloud
processing. For the former, one can find similar objects from the
gallery set, which can provide more information about the unknown
object. For the latter, the goal is to estimate the 6-DOF pose of
a 3D object comprising of rotation (R ∈ SO(3)) and translation
(t ∈ R3) , with respect to a chosen reference. The pose informa-
tion can facilitate downstream tasks such as object grasping, obstacle
avoidance and path planning for robotics. In a typical scene under-
standing problem using data from range sensors or a depth camera,
this problem would arise after a 3D detection algorithm has suc-
cessfully localized and labeled the objects present in the point cloud
scan. An unsupervised point cloud object retrieval and pose estima-
tion method, called PCRP, is proposed in this work.

The R-PointHop method was recently proposed by Kadam et
al.[1] for point cloud registration. Although being unsupervised,
it offers competitive performance with respect to other supervised
learning methods. In this paper, we extend R-PointHop to the con-
text of point cloud object retrieval and pose estimation against a
gallery point cloud set, which contains point cloud objects with
known pose orientation information. Point cloud retrieval has been
researched for quite some time in terms of retrieving a similar object
from a database or aggregating local feature descriptors for recog-
nizing places in the wild. Yet, retrieving objects with pose variations
is less investigated. Here, we show how R-PointHop features can
be reused to retrieve a similar point cloud object. Registration of
two similar objects (potentially with partial overlap), which was the
focus of R-PointHop, has been widely studied. Although being a
related problem, estimating the pose of a single object addressed
in this work is less explored. We analyze several bottlenecks of
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Fig. 1. Summary of the proposed PCRP method. First, a similar
object to the input query object (in red) is retrieved from the gallery
set (top row). Then, the query object is registered with the retrieved
object (bottom row) to estimate its pose.

R-PointHop and propose modifications to enhance its performance
for pose estimation.

Built upon enhanced R-PointHop, PCRP registers the unknown
point cloud object with those in the gallery set to achieve content-
based object retrieval and pose estimation jointly. As shown in Fig.
1, PCRP consists of “object retrieval” and “pose estimation” two
functions. For object retrieval, it first aggregates the pointwise fea-
tures learned from R-PointHop based on VLAD (Vector of Locally
Aggregated Descriptors) [2] to obtain a global point cloud feature
vector and then use it to retrieve a similar pre-aligned object from
the gallery set. For pose estimation, the 6-DOF pose of the query ob-
ject is found by registering it with the retrieved object. Experiments
on the ModelNet40 dataset demonstrate the superior performance of
PCRP in comparison with traditional and learning based methods.

This work has two main contributions. First, we extend R-
PointHop, which was originally designed for point cloud registra-
tion, to object retrieval and pose estimation. We show how features
derived from R-PointHop can be aggregated to yield a global fea-
ture descriptor for object retrieval and reuse point features for pose
estimation. Second, we propose ways to modify the attribute repre-
sentation in R-PointHop and make it more general. As a result, any
traditional point local descriptors, such as FPFH [3] and SHOT [4],
can be adopted by R-PointHop. The rest of the paper is organized
as follows. Related previous work is reviewed in Sec. 2. The PCRP
method is proposed in Sec. 3. Experimental results are shown in
Sec. 4. Finally, concluding remarks are given in Sec. 5.



2. REVIEW OF RELATED WORK

Point cloud processing includes classification, registration, segmen-
tation, retrieval, pose estimation, etc. There has been major advance-
ment in point cloud processing due to deep learning. PointNet [5]
employed an MLP-based permutation invariant network for point
cloud classification and segmentation. It is followed by a series of
work [6, 7, 8]. Besides permutation invariance, features invariant
to point cloud rotation [9, 10] are desirable for applications such as
data association, registration and classification of unaligned objects.
Learning based global registration methods [11, 12, 1] outperform
traditional handcrafted descriptors such as FPFH [3] and SHOT [4]
in registration performance and ICP-based [13] methods in object
registration. Recently, point cloud equivariant networks [14, 15, 16]
show impressive performance for object pose estimation, retrieval
and classification under different poses. Furthermore, the learning
based methods can be successfully applied to complex indoor scene
registration and visual odometry estimation.

As an alternative to deep learning, successive subspace learning
(SSL) has been proposed for point cloud processing. Its potential
was demonstrated in PointHop [17], PointHop++ [18], SPA [19], R-
PointHop [1] and GPCO [20]. The unsupervised feature learning in
SSL consists of attribute construction, neighborhood expansion, and
dimensionality reduction using the Saab transform. R-PointHop ex-
tracts a local reference frame for every point and builds the local fea-
ture by aligning neighborhood points to it. The neighborhood grows
successively and short-, mid-, and long-range point information is
captured. Later, a set of point correspondences are found and the
3D transformation is estimated using singular value decomposition
of the covariance matrix of corresponding points.

One limitation of R-PointHop and other exemplary deep net-
works for pair-wise registration [11, 12, 21] is the assumption that a
pre-aligned reference object is available, which is the same instance
of the input object whose pose is to be estimated. However, such
an assumption may not hold in practice and, as a result, the pose
estimation problem cannot be solved by registration. One way to
avoid this difficulty is to retrieve a similar pre-aligned object from
a gallery set first and then estimate the object pose by registering it
with the retrieved object as done in CORSAIR [22]. CORSAIR uses
the bottleneck layer representation of a registration network to train
another network for retrieval using metric learning. It is worthwhile
to mention that some pose estimation methods are reference object
free [16, 15]. They adopt point cloud equivariant networks as the
backbone and do not use object retrieval for pose estimation.

Point cloud retrieval has been studied extensively due to its
rich applications. Noteworthy work includes 3D ShapeNets [23]
for shape retrieval and PointNetVLAD [24] for place recognition.
Our retrieval idea is inspired by PointNetVLAD, which aggregates
pointwise features from PointNet using the VLAD feature [2]. Their
VLAD feature is obtained by taking a weighted average of point
features, where weights are jointly trained with the PointNet net-
work under supervised learning. In contrast, our R-PointHop feature
is learned without supervision. We should emphasize that most
retrieval methods assume that the query object and objects from the
gallery set are pre-aligned. Yet, in the context of joint object retrieval
and pose estimation, this assumption does not hold. It is essential to
develop a retrieval method, where the query object can possess any
arbitrary rotation. Our work is uniquely positioned in addressing
two challenges at one shot: 1) pose estimation without identical
object instances, and 2) object retrieval without pre-alignment.
Furthermore, we do not use deep leaning but successive subspace
learning.

Fig. 2. An overview of the proposed PCRP method: 1) pointwise
feature extraction from the input point cloud using R-PointHop, 2)
aggregation of point features into a global VLAD representation and
retrieval of similar objects from the gallery set based on similarity of
VLAD representations, and 3) the pose of the input is estimated by
registering the query object with the retrieved object.

3. PROPOSED PCRP METHOD

As shown in Fig. 2, the PCRP method consists of the following
three stages. First, features of every point in the input point cloud
are extracted using R-PointHop. Second, features of all points are
aggregated into a global descriptor using the VLAD method. The
nearest neighbor search is then used to retrieve a similar pre-aligned
object from the gallery set. Finally, the input object is registered
to the retrieved object to obtain the 6-DOF pose. Each of them is
elaborated below.

3.1. Feature Extraction

In the R-PointHop originally proposed in [1], point attributes are
constructed by partitioning the 3D space around a point into eight
octants using three orthogonal directions given by the local refer-
ence frame. The mean of points in each octant is concatenated to get
a 24D attribute vector. Yet, we observe that the 24D attribute vec-
tor is sensitive to noise and unable to capture complex local surface
patterns for distinction. A modified version that appends point co-
ordinates with eigen features was used for indoor scene registration
and odometry [20]. Actually, histogram-based point descriptors such
as SHOT (Signature Histogram of Orientations) [4] and FPFH (Fast
Point Feature Histogram) [3] have been widely used to describe the
local surface geometry. We may leverage them as well. One draw-
back of histogram-based descriptors is that they cannot capture the
far-distance information since they have a single scale only.

We propose to integrate histogram-based local descriptors with
R-PointHop, which has a multi-scale representation capability, to get
a new descriptor. Specifically, we replace the octant-based mean-
coordinates attributes in the original R-PointHop with the FPFH de-
scriptor in the first hop. The rest is kept the same as the original
R-PointHop. That is, the Saab transform is used to get the first-hop
spectral representation, and subsequent hops still involve attribute
construction by partitioning the 3D space into eight octants and get-
ting 8D attributes for each spectral component. We should empha-
size that FPFH is invariant to rotations so that the rotation-invariant
property of R-PointHop is preserved without any other adjustment.
The output of the first-hop stemming from FPFH is more power-
ful than the original R-PointHop design. We give the new descrip-
tor a name - FR-PointHop. This modification enriches R-PointHop
since it can take any local rotation-invariant feature representation
and generalize it to a multi-scale descriptor using the standard R-
PointHop pipeline.



3.2. Feature Aggregation

For an input point cloud, we extract features of each point using FR-
PointHop. Features of all points need to be aggregated to yield a
global descriptor for object retrieval. One choice of aggregation is
to use global max/mean pooling. It has been widely adopted in point
cloud classification. However, global pooling is not a good choice
since point features obtained by FR-PointHop only cover the infor-
mation of a local neighborhood. In the retrieval literature, Bag of
Words (BoW) and vectors of locally aggregated descriptors (VLAD)
[2] are popular methods in aggregating local features such as SIFT.
Here, we adopt VLAD [2] to aggregate point descriptors obtained
by R-PointHop to yield a global feature vector that is suitable for
retrieval. The global feature aggregation process is stated below.

The first step is to generate a codebook of k codewords of d di-
mensions, where d is the feature dimension. The k-means clustering
algorithm is used to achieve this objective. Learned point features
from the training data are used to form clusters, whose centroids are
computed. The k centroids represent k codewords in the codebook.
Given an input point cloud, its global VLAD feature vector is calcu-
lated as follows. The feature vector of each point is first assigned to
the nearest codeword based on the shortest distance criterion. Next,
for each point, the difference between its descriptor and the assigned
codeword is calculated, which represents the error vector in the fea-
ture space. Then, the differences with respect to the same codeword
are added together. Finally, error sums of all codewords are concate-
nated to get the VLAD feature. For a d-dimensional feature vector,
the VLAD feature is of dimension k × d, where k is the codeword
number.

In the training process, we use the generated codebook to pre-
compute the VLAD features of point cloud objects in the gallery set.
They are stored along with the codebook. In the inference stage, the
query object is first passed through FR-PointHop to extract point-
wise features. Then, its VLAD feature is calculated using the same
codebook and compared with the VLAD features of point cloud ob-
jects from the gallery set. The nearest neighbor search is used to
retrieve the best matching point cloud. It is worthwhile to mention
that, due to the rotation invariant nature of FR-PointHop, point fea-
tures and, hence, VLAD features are invariant with object’s pose,
which facilities retrieval in presence of pose variations.

3.3. Pose Estimation

Once an object from the gallery set is retrieved, the next step is to
register the query and the retrieved objects. The process closely re-
sembles the registration task of R-PointHop with additional aid of
the object symmetry information. The pointwise features extracted
from the query object for retrieval are reused here. For objects in the
gallery set, we only store their VLAD descriptors rather than their
pointwise features due to the high memory cost of the latter. Yet,
pointwise features of the retrieved object can be computed again us-
ing FR-PointHop at run time. The cost is manageable since it is done
for one retrieved object. Afterwards, corresponding points between
query and retrieved objects are found using the nearest neighbor cri-
terion in the feature space.

We exploit the object symmetry information to limit the corre-
spondence search region. 3D objects often possess different forms
of symmetry. For example, chair objects have a planar symmetry. To
avoid mismatched correspondences arising due to object symmetry,
correspondences are constrained to be among disjoint sets of points.
For every object, we divide its points into two disjoint sets using its
principal components.

First, we calculate 1D moments of the points projected along
each principal direction about the origin. Then, we take the abso-
lute difference between sum of moments of positive coordinates and
negative coordinates. Then, the principal component with the least
absolute difference is used to divide the points in disjoint sets. The
main intuition is to find an axis along which the projection of points
is most symmetric. The search space for this axis is restricted to ob-
ject’s principal components for simplicity. Yet, it yields reasonable
results as seen from top row of Fig. 3. Afterwards, the point corre-
spondences are found in each disjoint set (see the bottom row of Fig.
3) and then concatenated.

Fig. 3. (Top) Illustration of partitioning of point clouds into two
symmetrical parts and (Bottom) point correspondences between
symmetric parts.

Once the point correspondence is built, we use the orthogonal
procrustes method [25], which is based on the singular value de-
composition (SVD) of the data covariance matrix, to estimate the
rotation and translation that aligns the query object to the retrieved
object. This part is identical with that in R-PointHop. The trans-
formation is optimal in the sense that it achieves the least sum of
squared errors between matching points after alignment. RANSAC
[26] can be used to get a more robust solution and avoid the noise ef-
fect in building correspondences. Since objects in the gallery set are
pre-aligned, the obtained rotation and translation gives the 6-DOF
pose of the input query object.

4. EXPERIMENTS

We use point cloud objects from the ModelNet40 dataset [23] in all
experiments. For retrieval and pose estimation, we focus on four
object categories: airplane, chair, sofa, and car. For every object, the
dataset consists of 2048 points sampled from the surface. We use the
original train/test split. The experiments are divided into three parts
as discussed below. For R-PointHop, we use two hops and adjust the
energy threshold so as to have a 200-D point feature. The farthest
point sampling strategy is used after the first hop where the point
cloud is downsampled by half.

4.1. Object Registration with FR-PointHop

After replacing the conventional R-PointHop attributes with the
FPFH descriptor, we see an improvement in all object registration
tasks of FR-PointHop over R-PointHop. A random rotation and
translation is applied to the input object. For the challenging case of
partial object registration (under the assumption that the partial ref-
erence point cloud is available), we show the rotation and translation
errors Table 1 in terms of the mean squared error (MSE), the root



mean squared error (RMSE) and the mean absolute error (MAE).
We conduct performance benchmarking with SPA [19] (SSL-based),
FGR [27] (FPFH-based), and PRNet [21]. Clearly, the modified fea-
ture representation in FR-PointHop is favorable even in presence of
the reference object.

Table 1. Performance comparison of object registration.
Rotation error (in degree) Translation error

Method MSE RMSE MAE MSE RMSE MAE
SPA [19] 229.09 15.13 8.22 0.0019 0.0435 0.0089

FGR [27] 126.29 11.24 2.83 0.0009 0.0300 0.0080

PR-Net [21] 10.24 3.12 1.45 0.0003 0.0160 0.0100

R-PointHop 2.75 1.66 0.35 0.0002 0.0149 0.0008

FR-PointHop 2.68 1.64 0.33 0.0002 0.0149 0.0007

4.2. Object Retrieval with PCRP

We use Precision@M and the chamfer distance as two evaluation
metrics for object retrieval. For every query object, we generate its
ground truth by rank-ordering objects in the gallery set based on
the least chamfer distance. The chamfer distance is calculated as
the sum of Euclidean distances of every point in one point cloud
to its nearest point in the other point cloud. The Precision@M is
an average measure of the number of top M retrieved objects that
match with the top M objects from its ground truth. We expect a
higher Precision@M score while a lower chamfer distance for good
retrieval methods.

Ten codewords are used in the VLAD implementation. we re-
port Precision@10 scores and Top-1 chamfer distances for two cases
in Table 2. First, the query object is aligned with those in the gallery
set. Second, a uniform random rotation and translation is applied to
the query object so that it has an arbitrary pose. We provide compar-
isons with PointNet [5] (an exemplary deep learning method), COR-
SAIR [22] (on similar lines to our work, but supervised), PointHop
[17] (SSL-based), and FPFH [3]. For PointNet and PointHop, glob-
ally pooled features are adopted for retrieval. For FPFH, we ag-
gregate point features using VLAD. Furthermore, we replace our
VLAD aggregated feature with max pooling and report the perfor-
mance separately.

Results in Table 2 show the superiority of PCRP over others. For
PointNet and PointHop, we see a drop in performance in the case
of arbitrary poses. We expect similar performance for other meth-
ods that do not take pose variations into account. Since CORSAIR,
FPFH and PCRP use pose invariant feature representations, their per-
formance is robust against pose variation. PCRP is the best among
the three. Moreover, aggregating local features with max pooling in
PCRP degrades the performance significantly, thereby justifying the
inclusion of VLAD in PCRP.

Table 2. Comparison of point cloud retrieval performance.
Pre-aligned objects Arbitrary poses

Method
Precision@10

(%)

Top-1 Chamfer

distance

Precision@10

(%)

Top-1 Chamfer

distance

PointNet [5] 60.66 0.121 53.40 0.145

PointHop [17] 58.23 0.129 19.71 0.211

FPFH [3] 53.23 0.164 52.12 0.160

CORSAIR [22] 61.28 0.106 61.24 0.107
PCRP (max pool) 43.23 0.147 41.89 0.131

PCRP (VLAD) 63.23 0.101 63.07 0.111

4.3. Object Pose Estimation with PCRP

We report mean and median rotation errors between the predicted
and ground truth pose for all four object classes in Table 3. For per-
formance benchmarking, we select ICP [13] and FGR [27] among
traditional methods for which we provide the template point cloud.
For learning-based methods, we selected Chen et al.[15] (super-
vised) and Li et al.[16] (self-supervised) two methods, which are
based on equivariant networks. Finally, CORSAIR [22] is also in-
cluded.

Table 3. Mean and median rotation errors in degrees.
Chair Airplane Car Sofa

Method Mean Median Mean Median Mean Median Mean Median

ICP [13] 88.92 96.28 8.11 1.22 22.76 2.94 39.00 9.69

FGR [27] 22.10 6.04 6.84 3.33 18.44 2.69 9.97 2.36

CORSAIR [22] 13.99 4.58 8.09 3.43 12.09 2.13 9.12 3.24

Chen et al.[15] 8.56 3.87 3.35 1.12 9.48 1.85 4.76 1.56
Li et al.[16] 7.05 4.55 23.09 1.66 17.24 2.13 8.87 3.22

PCRP 14.42 4.24 2.98 1.65 11.22 2.11 8.84 2.29

From mean and median rotation errors, PCRP is significantly
better than ICP which is only good for local registration. It also
outperforms FGR and CORSAIR. Its performance is slightly inferior
to the method of Li et al.[16]. In all the cases, the mean rotation
errors are higher than the median error. We study the distribution
of rotation errors across all point clouds and observe that the higher
error is only due to a large registration error in only a few point
clouds. Actually, after plotting the CDF of the error for all point
clouds, more than 90% of test samples have a rotation error less than
5 degrees.

It is worthwhile to point out the advantages of PCRP. First,
it combines unsupervised feature learning with established non-
learning-based pose estimation using point correspondences. The
training time is typically less than 30 minutes in building the Saab
kernels and the VLAD codebook. The FR-PointHop model size is
only 230kB along with 1.6MB to store the VLAD features and the
codebook. In contrast, we find that the model size of the exemplary
works is 30MB for Chen et al.and 72MB for Li et al.. This clearly
highlights that PCRP would be favorable in resource constrained
occasions.

Further investigation into failure cases reveals that most of them
occur when a similar matching point cloud is not available in the
database for retrieval. This is a bottleneck of PCRP. Under the as-
sumption that a similar object is present in the gallery set, it can
estimate the pose accurately. One way to filter out query samples au-
tomatically is to compare the Chamfer distance to the best retrieved
object. If the Chamfer distance is above a certain threshold, it cannot
be treated as a reliable result.

5. CONCLUSION

An unsupervised feature learning method for point cloud retrieval
and pose estimation, called PCRP, was proposed in this paper. PCRP
estimates the 6-DOF pose comprising of rotation and translation of
a point cloud object using a similar pre-aligned object of the same
object category. It uses the R-PointHop method to extract point fea-
tures from 3D point cloud objects. The features are aggregated into
a global descriptor using VLAD and used to retrieve similar pre-
aligned objects. Finally, the point features of the query and retrieved
point clouds are used to estimate the 3D pose of the query point
cloud using registration.
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